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Predictive maintenance
Concept

¢©) Definition (NF EN 13306 X 60-319 )
a condition-based maintenance, performed according to

the forecasts extrapolated from the analysis and the
ratings of the relevant parameters of the asset degradation

@) Cost reductions

» maintenance operations are shorter...
»...and less frequent
—> Assets availabilities are optimized

» Spare components quantities & urgent
orders are reduced...
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Predictive maintenance
Concept
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o Predictive maintenance requires numerous
measures

—> remote monitoring record them without any

o Remote monitoring improves :

>

YV V VY V V

Predictive maintenance
Remote monitoring

impact on the train traffic

the failure reporting time

the time dedicated to identify and analyze

the cause of failure © Main detected defects
reliability » inspection detector
availability » lock adjustment
maintainability » friction

safety » oObstacles
maintenance cost » driving rods/guidance
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3G or Wifi

@Cloud PUNIS S RSS———

Computing
e
@)
» Data centralization & archiving == » Remote access
» Forecasted status computing © > Remote monitoring
» Alert and alarm generating » Alert and alarm viewing

DATA ACQUISITION CENTRALIZATION _

Monitoring system
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Monitoring system

Data acquisition

» Remote monitoring
» Alert and alarm generating » Alert and alarm viewing

DATA ACQUISITION CENTRALIZATION MONIT-

»Sensors
i e ypIically wi - MA outpu
consumption humidity
Wireless for next generations
Current in Impact in
Inspection TURNOUT turnout
circuits crossing
. . . »D ransmission
Actuation Vibration for ala lransmissio
and locking drive by Ethernet, optical fiber,
force mechanism and/or G.SHDSL
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Monitoring system
Centralization

o Database

Most of the time, predictive systems require
learning period and long-terms analysis. They

DATA ACQUISITION

Cloud
Computing

CENTRALIZATION

0 Thresholds

to grade the measured or calculated
values and give them a status

could thus be considered as “big data” systems.

o Indicators

» to ease understanding

» to allow comparisons and operations
between various measures of different types.
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Monitoring system - =

. .
Centralization )
(i)
» Data centralization & archiving == » Remote access
» Forecasted status computing > » Remote monitoring
» Alert and alarm generating » Alert and alarm viewing

DATA ACQUISITION CENTRALIZATION _

o Typical case

> Status definition >Indicators calculation> Turnout calculation >
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Monitoring system
Interfaces
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» Data centralization & archiving
» Forecasted status computing
» Alert and alarm generating

@Cloud

Computing

3G off Wifi
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> Remote access

» Remote monitoring
» Alert and alarm viewing
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o Compatibility

Voie2 &

11

» With other supervision system
(SNMP)
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Data mining

Ascending Hierarchical Classification (AHC)

The Ascending Hierarchical Classification consists of
carrying out progressive grouping of individual values in
accordance with their degrees of similarity to obtain a
single class that groups them all.

Dimension 2
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Once this calculation has been
made, the individual values are
divided up into various classes
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Data mining
Partition Around Medoids (PAM)

The PAM algorithm partitions the dataset of n objects into k clusters. This algorithm works with a
matrix of dissimilarity, whose goal is to minimize the overall dissimilarity between the representants

of each cluster and its members.

This algorithm is intended to find a sequence of objects called medoids that are centrally located in
clusters. In other words, a medoid can be defined as the object of a cluster whose average

dissimilarity to all the objects in the cluster is minimal.
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Data mining
Results

"
» most of the measures could be split into 3 y

classes =

» each class represented a status (ok / alert /
alarm ) and included similar measures

» some classification irregularities occurred

=== = » classification can be used for automatic
= learning...

» ...and for studying predictive algorithms
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